Semiconductor Devices and Models

Semiconductor Devices and Models

- Resistor
- Capacitor
- Diode
- Bipolar Transistor
- MOSFET
- SPICE Model
- Appendix

Resistors

- Material
 - Diffusion layers: e.g. n+, p+, well
 - ◆ Conductors: e.g. polysilicon, ...

Cross-section area, A

 $R = \frac{\rho L}{\rho}$

- Resistance calculation
 - $R = \rho L/A = \rho L/tW = R_{\Box}L/W$
 - $\boldsymbol{\rho}$ is resistivity

 R_{\Box} = ρ/t is sheet resistance

• Sheet resistance (R_{\Box})

Resistivity=0

Resistors (Cont.)

• Graphical calculations from sheet resistance

VC (voltage coefficient) and TC (temperature coefficient) of R (or C)
 → Nonlinearity → THD

Prof. Tai-Haur Kuo, EE, NCKU, Tainan City, Taiwan

Capacitors

Metal- or polysilicon- over-diffusion
 Capacitance is voltage dependent

High linearity

- Inter-metal and intra-metal
 - Inter: Different layer
 - Intra: Same layer

Resister Ratio-matching Considerations

Capacitor Ratio-matching Considerations

Diode

Junction Capacitance

• For abrupt junction:

$$\begin{aligned} Q^{+} &= Q^{-} = [2qK_{S}\epsilon_{0}(\Phi_{0} + V_{R})\frac{N_{A}N_{D}}{N_{A} + N_{D}}]^{1/2} \\ C_{j} &= \frac{dQ^{+}}{dV_{R}} = [\frac{qK_{S}\epsilon_{0}}{2(\Phi_{0} + V_{R})}\frac{N_{A}N_{D}}{N_{A} + N_{D}}]^{1/2} = \frac{C_{j0}}{\sqrt{1 + \frac{V_{R}}{\Phi_{0}}}} , \text{ where } C_{j0} = [\frac{qK_{s}\epsilon_{0}}{2\Phi_{0}}\frac{N_{A}N_{D}}{N_{A} + N_{D}}]^{1/2} \end{aligned}$$

• For graded junction

$$Q^{+} = Q^{-} = [2qK_{S}\varepsilon_{0}(\Phi_{0} + V_{R})\frac{N_{A}N_{D}}{(N_{A} + N_{D})}]^{1-m_{j}}$$

$$C_{j} = \frac{dQ^{+}}{dV_{R}} = (1 - m_{j})[2qK_{S}\varepsilon_{0}\frac{N_{A}N_{D}}{N_{A} + N_{D}}]^{1-m_{j}}\frac{1}{(\Phi_{0} + V_{R})^{m_{j}}} = \frac{C_{j0}}{(1 + \frac{V_{R}}{\Phi_{0}})^{m_{j}}}$$
where $C_{j0} = (1 - m_{j})[2qK_{S}\varepsilon_{0}\frac{N_{A}N_{D}}{N_{A} + N_{D}}]^{1-m_{j}}\frac{1}{\Phi_{0}^{m_{j}}}$
 m_{j} depends on the doping profile

 $m_{j} \approx$ 1/3 $% m_{j} \approx$ 1/3 for a linearly graded junction

Diode Model

- DC Model • For V < V_r (off) • For V > V_r (on) $R_{f} = (\frac{dI}{dV})^{-1} = \frac{V_{T}}{I_{S}e^{V_{D}/V_{T}}} \approx \frac{V_{T}}{I_{D}}$ I_{S} I_{S} V_{r} V_{r} V_{O} V_{r} V_{r} V_{r} V_{r}
- Small Signal Model
 - For forward-biased diode
 - $r_{d} \approx \frac{V_{T}}{I_{D}}$ Diffusion capacitance: $C_{d} \approx \frac{\tau_{T}}{r_{d}}$ Junction capacitance: C_{j} Normally, $C_{d} >> C_{i}$ ($C_{d} \approx 100C_{i}$)
 - $\boldsymbol{\tau}_{\scriptscriptstyle T}$: Diode transit time

Bipolar Process

• Vertical and lateral transistor in a bipolar process

> Low β

BJT Model: Ebers-Moll model (DC Model)

Small Signal BJT Model

Small Signal BJT Model (Cont.)

MOS Transistors

MOS structure

MOS Transistors (Cont.)

MOS Transistor Symbol (Cont.)

Prof. Tai-Haur Kuo, EE, NCKU, Tainan City, Taiwan

MOS Transistor Operation

• Example : nMOS

• $V_{gs} > V_t$, $V_{ds} = 0$ (linear region)

MOS Transistor Operation (Cont.)

- Example : nMOS
 - $V_{gs} > V_t$, $V_{ds} > V_{gs}$ - V_t (saturation region)

Large Signal Behavior of MOSFETs

Threshold voltage

$$\begin{split} V_{t} &= V_{t0} + \frac{\sqrt{2 q \epsilon_{SiO_{2}} N_{A}}}{C_{ox}} \left(\sqrt{2 \varphi_{f}} + V_{SB} - \sqrt{2 \varphi_{f}} \right) \\ &= V_{t0} + \gamma \left(\sqrt{2 \varphi_{f}} + V_{SB} - \sqrt{2 \varphi_{f}} \right) \\ &\text{where } \gamma = \frac{\sqrt{2 q \epsilon_{SiO_{2}} N_{A}}}{C_{ox}} \quad \text{and } C_{OX} = \frac{k_{ox} \epsilon_{0}}{t_{ox}} = \frac{\epsilon_{ox}}{t_{ox}} \\ \text{Large-Signal I-V} \end{split}$$

$$I_{DS} = \frac{\mu C_{ox} W}{2L} (V_{GS} - V_t)^2 = \frac{kW}{2L} (V_{GS} - V_t)^2$$

If depletion-layer width X_d is considered $L_{eff} = L-X_d$

$$\Rightarrow I_{\rm DS} = \frac{kW}{2L_{\rm eff}} (V_{\rm GS} - V_{\rm t})^2$$

• Channel length modulation $\frac{\partial I_{DS}}{\partial V_{DS}} = -\frac{kW}{2L_{eff}^2} (V_{GS} - V_t)^2 \frac{dL_{eff}}{dV_{DS}} = \frac{I_{DS} dx_d}{L_{eff} dV_{DS}}$ Let $\left(\frac{\partial I_{DS}}{\partial V_{DS}}\right)^{-1} = r_{ds} = \frac{1}{\lambda I_{DS}} = \frac{V_A}{I_{DS}} \Rightarrow \lambda = \frac{1}{V_A} = \frac{1}{L_{eff}} \left(\frac{dx_d}{dV_{DS}}\right) \Rightarrow I_{DS} = \frac{kW}{2L} (V_{GS} - V_t)^2 (1 + \lambda V_{DS})$

Prof. Tai-Haur Kuo, EE, NCKU, Tainan City, Taiwan

Small Signal Model of MOSFETs in Saturation

Equivalent circuit model

Small Signal Model of MOSFETs in Saturation (Cont.)

 $\lambda V_{\rm DS} \ll 1$

•
$$g_m = \frac{\partial I_{DS}}{\partial V_{GS}} = k' \frac{W}{L} (V_{GS} - V_t) = \sqrt{2k \frac{W}{L} I_{DS}}$$

•
$$g_{mb} = \frac{\partial I_{DS}}{\partial V_{BS}} = k \frac{W}{L} (V_{GS} - V_t) \frac{\partial V_t}{\partial V_{BS}} = \chi g_m$$

$$\frac{\partial V_{t}}{\partial V_{BS}} = \frac{\partial \left(V_{to} + \gamma \sqrt{2\phi_{f} + V_{SB}} - \sqrt{2\phi_{f}} \right)}{\partial V_{BS}} = \frac{-\gamma}{2\sqrt{2\phi_{f} + V_{BS}}} = \chi$$

•
$$r_{ds} = \left(\frac{\partial I_{DS}}{\partial V_{DS}}\right)^{-1} = \frac{L_{eff}}{I_{DS}} \left(\frac{dX_d}{dV_{DS}}\right)^{-1} = \frac{1}{\lambda I_{DS}} = \frac{V_A}{I_{DS}}$$

•
$$C_{sb} = \frac{C_{sb0}}{\left(1 + \frac{V_{SB}}{\phi_0}\right)^{\frac{1}{2}}}$$

•
$$C_{db} = \frac{C_{db0}}{\left(1 + \frac{V_{DB}}{\phi_0}\right)^{\frac{1}{2}}}$$

•
$$C_{gs} = \frac{\partial Q_T}{\partial V_{GS}} \approx \frac{2}{3} WLC_{OX}$$

$$f_t = \frac{g_m}{2\pi C_{gs}} = \frac{1}{2\pi} \frac{K \frac{W}{L} (V_{GS} - V_t)}{\frac{2}{3} WLC_{ox}}$$

$$\omega_t = 2\pi f_t = \frac{3\mu}{2L^2} (V_{GS} - V_t)$$

• Derivation of C_{gs}

◆ Total charge stored in the channel Q_T

$$Q_{T} = -WC_{ox} \int_{0}^{L} [V_{GS} - V(y) - V_{t}] dy = -\int_{0}^{V_{GS} - V_{t}} \frac{W^{2}C_{ox}^{2}\mu}{I_{D}} (V_{GS} - V - V_{t})^{2} dV$$

$$= \frac{2}{3} WLC_{ox} (V_{GS} - V_{t})$$

$$C_{gs} = \frac{\partial Q_{T}}{\partial V_{GS}} = \frac{2}{3} WLC_{ox}$$

Example—Small Signal Model

• Derive the complete small-signal model for an NMOS transistor with I_{DS} =100µA, V_{SB} =0.15V, V_{DS} =0.6V. Device parameters are 2 ϕ_f = 0.65, W=2.5 µm, L=45 nm, γ = 0.45V^{1/2}, $\mu_n C_{ox}$ = 280µA/V², λ = 2.22V⁻¹, t_{ox} = 1.2 nm, Ψ_0 = 0.69 V, C_{sb0} = C_{db0} = 1.125 fF. Overlap capacitance from gate to source and gate to drain is 1.25 fF. Assume C_{qb} =5fF.

$$g_{\rm m} = \sqrt{2\mu_{\rm n}C_{\rm ox}\frac{W}{L}I_{\rm D}} = \sqrt{2\times280\times10^{-6}\times\frac{2.5}{0.045}\times100\times10^{-6}} \frac{A_{\rm V}}{M_{\rm V}} = 1.76^{\rm m}A_{\rm V}}$$
$$g_{\rm mb} = \gamma\sqrt{\frac{\mu_{\rm n}C_{\rm ox}\frac{W}{L}I_{\rm D}}{2(2\phi_{\rm f}+V_{\rm SB})}} = 0.45\sqrt{\frac{280\times10^{-6}\times\frac{2.5}{0.045}\times100\times10^{-6}}{2\times(0.65+0.15)}} \frac{A_{\rm V}}{M_{\rm V}} = 443^{\rm \mu}A_{\rm V}}$$
$$r_{ds} = \frac{1}{\lambda I_{\rm DS}} = \frac{1}{2.22\times100\times10^{-6}} = 22.2k\Omega$$

Example—Small Signal Model (Cont.) With V_{SB}=0.15V, we find $C_{sb} = \frac{C_{sb0}}{\left(1 + \frac{V_{SB}}{W}\right)^{1/2}} = \frac{1.125}{\left(1 + \frac{0.15}{0.69}\right)^{1/2}} \text{ fF} = 1\text{ fF}$

• The voltage from drain to body is $V_{DB} = V_{DS} + V_{SB} = 0.75 V$

Hence ,
$$C_{db} = \frac{C_{db0}}{\left(1 + \frac{V_{DB}}{\psi_0}\right)^{1/2}} = \frac{1.125}{\left(1 + \frac{0.75}{0.69}\right)^{1/2}} \, fF = 1.85 fF$$

- The oxide capacitance per unit area is $C_{ox} = \frac{\varepsilon_{r}\varepsilon_{SiO_{2}}}{t_{ox}} = \frac{3.9 \times 8.854 \times 10^{-14} \text{ F/}}{1.2 \times 10^{-9} \text{ m}} \approx 28.7 \text{ fF/}(\mu\text{m})^{2}$
- The intrinsic portion of the gate source capacitance is

$$C_{gs} = \frac{2}{3} \times 2.5 \times 0.045 \times 28.7 \text{fF} \approx 2.15 \text{fF}$$

Example—Small Signal Model (Cont.)

- The addition of overlap capacitance gives $C_{gs} = 3.4 \text{ fF}$
- Gate-drain capacitance is overlap capacitance $C_{gd} = 1.25 \text{ fF}$
- The complete small-signal equivalent circuit is shown below

• The f_T of the device can be calculated with $C_{gb} = 5 fF$ giving

$$f_{\rm T} = \frac{1}{2\pi} \frac{g_{\rm m}}{C_{\rm gs} + C_{\rm gd} + C_{\rm gb}} = \frac{1}{2\pi} \frac{1.76 \times 10^{-3}}{(3.4 + 1.25 + 5) \times 10^{-15}} \cong 29 \,\rm GHz$$

Prof. Tai-Haur Kuo, EE, NCKU, Tainan City, Taiwan

郭泰豪, Analog IC Design, 2023

Mobility Degradation

- Large lateral electric fields accelerate carriers up to a maximum velocity
- Larger vertical electric fields \rightarrow effective channel depth $\downarrow \rightarrow$ collisions \uparrow
- These effects can be modeled by an effective carrier mobility

$$\mu_{n,eff} \approx \frac{\mu_{n}}{[1+(\theta V_{eff})^{m}]^{1/m}}$$

$$I_{D} = \frac{1}{2} \mu_{n} C_{ox} \frac{W}{L} V_{eff}^{2} (\frac{1}{[1+(\theta V_{eff})^{m}]^{1/m}})$$
where θ and m are device parameters
$$I_{D} = \frac{1}{2} \mu_{n} C_{ox} \frac{W}{L} V_{eff}^{\alpha}, \alpha < 2$$
This effect can also expressed as α -law model from curve-fitting
$$I_{D} (A) \int_{D} (A) \int_{U} (A) \int_{U$$

Substrate Current Flow in MOSFETs

$$I_{DB} = k_1 (V_{DS} - V_{DS(sat)}) I_{DS} exp[-\frac{k2}{(V_{DS} - V_{DS(sat)})}]$$

where k_1 and k_2 are process-dependent parameters and V_{DSsat} is the value of V_{DS} where the drain characteristics enter the saturation region

$$g_{db} = \frac{\partial I_{DB}}{\partial V_{DB}} = \frac{k_2 I_{DB}}{\left(V_{DS} - V_{DS(sat)}\right)^2}$$

Example (1/2)

• Calculate $r_{db} = 1/g_{db}$ for $V_{DS} = 2$ V and 4 V, and compare with the device r_{ds} .

Assume I_{DS} = 100µA, λ = 0.45 V⁻¹, $V_{DS(sat)}$ = 0.3 V, K1 = 5 V⁻¹, and K2 = 30 V.

For V_{DS} = 2 V, we have

$$I_{DB} = 5 \times 1.7 \times 100 \times 10^{-6} \times \exp\left(-\frac{30}{1.7}\right) = 1.8 \times 10^{-11} \text{ A}$$

$$g_{db} = \frac{30 \times 1.8 \times 10^{-11}}{1.7^2} = 1.9 \times 10^{-10} \frac{\text{A}}{\text{V}}$$

and thus

$$r_{db} = \frac{1}{g_{db}} = 5.3 \times 10^9 \ \Omega = 5.3 \ G\Omega$$

Example (2/2)

This result is negligibly large compared with

$$r_{ds} = \frac{1}{\lambda I_D} = \frac{1}{0.45 \times 100 \times 10^{-6}} = 22.2 \text{ k}\Omega$$

However, for $V_{DS} = 4 \text{ V}$

$$I_{DB} = 5 \times 3.7 \times 100 \times 10^{-6} \times \exp\left(-\frac{30}{3.7}\right) = 5.6 \times 10^{-7} \text{ A}$$

The substrate leakage current is now about 0.5% of the drain current. We find

$$g_{db} = \frac{30 \times 5.6 \times 10^{-7}}{3.7^2} = 1.2 \times 10^{-6} \frac{A}{V}$$

and thus

$$r_{db} = \frac{1}{g_{u}} = 8.33 \times 10^5 \ \Omega = 833 \ k\Omega$$

This parasitic resistor is now comparable to r_{ds} and can have a dominant effect on high-output-impedance MOS current mirrors.

Summary of MOSFET Parameters

Large-Signal Operation

Quantity

Formula

Drain current (saturation region)

$$I_{ds} = \frac{\mu C_{ox}}{2} \frac{W}{L} (V_{gs} - V_t)^2 (1 + \lambda V_{ds})$$

Drain current (triode region)

$$I_{ds} = \frac{\mu C_{ox}}{2} \frac{W}{L} [2(V_{gs} - V_t)V_{ds} - V_{ds}^2]$$

Threshold voltage

$$\mathbf{V}_{t} = \mathbf{V}_{t0} + \gamma [\sqrt{2\phi_{f}} - \mathbf{V}_{sb}] - \sqrt{2\phi_{f}}]$$

Threshold voltage parameter

$$\gamma = \frac{1}{C_{\rm ox}} \sqrt{2q\epsilon N_{\rm A}}$$

$$C_{ox} = \frac{\varepsilon_{ox}}{t_{ox}} = 3.45 \text{ fF}/\mu\text{m}^2 \text{ for } t_{ox} = 100 \text{ Å}$$

Prof. Tai-Haur Kuo, EE, NCKU, Tainan City, Taiwan

Summary of MOSFET Parameters

Large-Signal Operation

Quantity

Top-gate transconductance

Transconductance-to-current ratio

$$\frac{g_{\rm m}}{I_{\rm DS}} = \frac{2}{V_{\rm GS} - V_{\rm t}}$$

Formula

 $g_{\rm m} = \mu C_{\rm ox} \frac{W}{L} (V_{\rm GS} - V_{\rm t}) = \sqrt{2I_{\rm DS}\mu C_{\rm ox} \frac{W}{L}}$

Body-effect transconductance

Channel-length modulation parameter

Output resistance

$$\lambda = \frac{1}{V_{A}} = \frac{1}{V_{eff}} \frac{dX_{d}}{dV_{DS}}$$

$$r_{ds} = \frac{1}{\lambda I_{DS}} = \frac{L_{eff}}{I_{DS}} \left(\frac{dX_d}{dV_{DS}}\right)^{-1}$$

 $g_{\rm mb} = \frac{\gamma}{2\sqrt{2\varphi_{\rm f}} + V_{\rm sp}} g_{\rm m} = \chi g_{\rm m}$

Summary of MOSFET Parameters

Quantity

Effective channel length

Maximum gain

Source-body depletion capacitance

Drain-body depletion capacitance

Gate-source capacitance

Transition frequency

Formula

$$L_{eff} = L_{drwn} - 2L_d - X_d$$

$$g_{m}r_{ds} = \frac{1}{\lambda} \frac{2}{V_{GS} - V_{t}} = \frac{2V_{A}}{V_{GS} - V_{t}}$$

$$\mathbf{C}_{sb} = \frac{\mathbf{C}_{sb0}}{\left(1 + \frac{\mathbf{V}_{SB}}{\psi_0}\right)^{0.5}}$$

$$C_{db} = \frac{C_{db0}}{\left(1 + \frac{V_{DB}}{\psi_0}\right)^{0.5}}$$

$$C_{gs} = \frac{2}{3} WLC_{ox}$$

$$f_{\rm T} = \frac{g_{\rm m}}{2\pi \left(C_{\rm gs} + C_{\rm gd} + C_{\rm gb}\right)}$$

Prof. Tai-Haur Kuo, EE, NCKU, Tainan City, Taiwan

SPICE MOSFET Model Parameters of A Typical NMOS Process (MOSIS)

Parameter			
(Level 2 model)	Enhancement	Depletion	Units
VTO	1.14	-3.79	V
KP	37.3	32.8	μA/V ²
GAMMA	0.629	0.372	$V^{\frac{1}{2}}$
PHI	0.6	0.6	V
LAMBDA	3.1E-2	1.00E-6	V^{-1}
CGSO	1.60E-4	1.60E-4	${ m fF}/\!\mu$ width
CGDO	1.60E-4	1.60E-4	${ m fF}/\mu$ width
CGBO	1.70E-4	1.70E-4	${ m fF}/\!\mu$ width
RSH	25.4	25.4	Ω/\Box
CJ	1.1E-4	1.1E-4	pF/µ²
MJ	0.5	0.5	
CJSW	5.0E-4	5.0E-4	pF/µ ² perimeter
MJSW	0.33	0.33	
тох	544	544	$\overset{\circ}{\mathbf{A}}$

SPICE MOSFET Model Parameters of A Typical NMOS Process (MOSIS) (Cont.)

(Level 2 model)	Enhancement	Depletion	Units
NSUB	2.09E15	1.0E16	1/cm ²
NSS		0	$1/\text{CM}^2$
TPG	1.90012	4.3E12 1	I/CIII
XJ	1.31	0.6	
LD	0.826	1.016	μ
UO	300	900	μ
UCRIT	1.0E6	0.805E6	cm²/(v ⋅s)
UEXP	1.001E-3	1.001E-3	V/cm
VMAX	1.0E5	6.75E5	m/s
NEFF	1.001E-2	1.001E-2	
DELTA	1.16	2.80	

• The SPICE parameters: Empirical parameters

- Fitting measured device characteristics to the mathematical equations
- Using a numerical optimization algorithm
- This approach gives good fit to the model but causes a deviation from the typical parameters.
- Parameter relationships may not be self-consistent with some of the fundamental relationships.

*Please refer to the chapters about SPICE model in the HSPICE document suggested in assignment 1

Prof. Tai-Haur Kuo, EE, NCKU, Tainan City, Taiwan

Appendix

- Resistance Estimation
- Capacitance Estimation
- Inductance Estimation

Resistance Estimation

- Sheet Resistance
 - $R=\rho L/A=\rho L/tW=R_{\Box}L/W$
 - $R_{\Box} = \rho/t$
 - ρ:resistivity
 - t: thickness
 - L:conductorlength
 - W:conductorwidth
 - R_{\Box} : sheet resistance (ohm/square, Ω/\Box)

Resistance Estimation (cont.)

• Typical sheet resistance for conductors

Material	Min.	Typical	Max.
Intermatal (metal1-metal2)	0.05	0.07	0.1
Top-metal(metal3)	0.03	0.04	0.05
Polysilicon	15	20	30
Silicide	2	3	6
Diffusion(n+, p+)	10	25	100
Silicided diffusion	2	4	10
N-well	1K	2K	5K

Resistance Estimation of Nonrectangular Shapes

Prof. Tai-Haur Kuo, EE, NCKU, Tainan City, Taiwan

Contact and Via Resistance

- Proportional to the area of the contact
 - ♦ e.g. feature size↓ =>Rcontact↑
- $0.25\Omega \sim a$ few tens of Ωs
- Multiple contacts to obtain low-resistance interlayer connections

MOS-Capacitor Characteristics

• C-V plot

• Accumulation region

$$C_{o} = \frac{\varepsilon_{SiO_{2}}\varepsilon_{o}}{t_{ox}} A = C_{ox} \bullet A$$

 C_o : gate capacitance

- ϵ_{SiO_2} : dielectric constant of SiO₂(= 3.9)
- $\boldsymbol{\epsilon}_{o}$: permittivity of freespace
- A:gate area

$$C_{ox} = \frac{\varepsilon_{SiO_2}\varepsilon_o}{t_{ox}}$$
: gate capacitance per unit area

Three regions in the plot (i)Accumulation region (ii)Depletion region (iii)Inversion region

Prof. Tai-Haur Kuo, EE, NCKU, Tainan City, Taiwan

MOS-Capacitor Characteristics (cont.)

• Depletion region $C_{dep} = \frac{\varepsilon_{Si}\varepsilon_{o}}{d}A = C_{ox}$

d : depletion layer depth

 ϵ_{si} : dielectric constant of Si(=12)

 $C_{gb} = \frac{C_o C_{dep}}{C_o + C_{dep}}$: gate capacitance per unit area

Where C_0 is low frequency capacitance between gate and surface

Inversion region

 $C_{gb} = \begin{cases} C_{o}: \text{static (i.e. low frequency, < 100Hz)} \\ \frac{C_{o}C_{dep}}{C_{o} + C_{dep}} = C_{min}: \text{dynamic (i.e. high frequency)} \end{cases}$

 C_{\min}

 $-C_{dep}$ depends on the depth of the depletoin region,

i.e. depends on substratedoping density.

-For
$$t_{ox} = 100 \sim 200 \text{ Å}, C_{min}/C_{o}$$
 varies from 0.02 ~ 0.3

for substrated oping density varies from 1×10^{-14} cm⁻³ to 5×10^{-15} cm⁻³

MOS Device Capacitance

MOS Device Capacitance (cont.)

• Approximation of gate capacitance

-Self-aligned process is assumed (i.e. overlap caps. are negligible)

Parameter	off	Non-saturated	Saturated
C _{gb}	εA	0	0
C _{gs}	t _{ox} 0	$\frac{\epsilon A}{2t_{ox}}$	$\frac{2\epsilon A}{3t_{ox}}$
C_gd	0	$\frac{\epsilon A}{2t_{ox}}$	O(finite for short channel devices
$C_g = C_{gb} + C_{gs} + C_{gd}$	$\frac{\epsilon A}{t_{ox}}$	$\frac{\epsilon A}{t_{ox}}$	$\frac{2\varepsilon A}{3t_{ox}} \longrightarrow \frac{0.9 \varepsilon A}{t_{ox}} \text{ (short channel)}$

Cgs,Cgd and Cox

Example 1: W=49.2µm, L=4.5µm (long channel)

 \bullet C_{gs} and C_{gd}

Cgs,Cgd and Cox (cont.)

• Example 2: L=0.75µm (short channel)

 \bullet C_{gs} and C_{gd}

Cox, gate capacitance per unit area

•
$$\mathbf{C}_{ox} = \frac{\varepsilon_{SiO_2}\varepsilon_o}{t_{ox}} \mathbf{A}$$
; where $\varepsilon_{SiO_2} = 3.9$ and $\varepsilon_o = 8.854 \times 10^{-14}$
e.g. $t_{ox} = 350 \stackrel{o}{\mathbf{A}} => \mathbf{C}_{ox} \approx 1 \times 10^{-3} \text{ pF/}\mu\text{F}^2 = 1 \text{ fF/}\mu\text{f}^{-2}$

- Unit transistor
 - It is the same width as a metal-diffusion contact

• Minimum-size transistor

Prof. Tai-Haur Kuo, EE, NCKU, Tainan City, Taiwan

APP2-12

Diffusion Capacitance

- Area and periphery
 Cd=Cja*(ab)+Cjp*(2a+2b)
 Cja: junction capacitance per µm²
 Cjp: periphery capacitance per µm

 a: width of diffusion region
 b: length of diffusion region
- Typical value (1µm n-well process)
 Cja: 2*10⁻⁴pf/µm² (n+ diffusion)
 5*10⁻⁴pf/µm² (p+ diffusion)
 Cjp: 4*10⁻⁴pf/µm² (n+ diffusion)
 4*10⁻⁴pf/µm² (p+ diffusion)
- Voltage dependent

$$C_{j}(V_{j}) = C_{j0} \left(1 - \frac{V_{j}}{V_{b}}\right)^{-m}$$

 V_j is junction voltage V_b is built - in junction potential ~ 0.6V C_{j0} is zero bias capacitance m = 0.3(graded junction) ~ 0.5(abrupt junction)

SPICE Modeling of MOS Capacitances

• SPICE example

M14350NFETW = 4UL = 1UAS = 15PAD = 15PPS = 11.5UPD = 11.5U

```
.MODEL NFET NMOS
+ TOX = 100E-8
+ CGBO = 200PCGSO = 600PCGDO = 600P
+ CJ = 200UCJSW = 400PMJ = 0.5MJSW = 0.3PB = 0.7
+ .....
```

```
node4- drainTOX = 100 \text{\AA}node3- gatesourcearea AS = 15 \mu m^2node5- sourcedrain area AD = 15 \mu m^2node0- substratesourceperipheryPS = 11.5 \mu mchannel width = 4 \mu mdrain peripheryPD = 11.5 \mu m
```

 C_{gbo} occours due to the polysilicon extession beyond the channel (200×10⁻¹² F/M) C_{gso} and C_{gdo} represent the gate-to-source/drain capacitance due to overlap in the physical structure of the transistor. (600×10⁻¹² F/M)

SPICE Modeling of MOS Capacitances (cont.)

Capacitance

gate capacitanœ

$$\begin{split} \mathbf{C}_{g(\text{intrinsic})} &= \mathbf{W} \bullet \mathbf{L} \bullet \mathbf{C}_{OX} = 4 \times 1 \times 35 \times 10^{-4} \, \text{PF} = 0.014 \, \text{PF} \\ \mathbf{C}_{g(\text{extrinsic})} &= \left(\mathbf{W} \bullet \mathbf{C}_{gs0}\right) + \left(\mathbf{W} \bullet \mathbf{C}_{gd0}\right) + \left(2\mathbf{L} \bullet \mathbf{C}_{gb0}\right) \\ &= 4 \times 6 \times 10^{-4} + 4 \times 6 \times 10^{-4} + 2 \times \left(1 \times 2 \times 10^{-4}\right) \, \text{PF} \\ &= 0.0052 \, \text{PF} \end{split}$$

$$C_{g(total)} = C_{g(intrinsic)} + C_{g(extrinsic)} \approx 0.02 PF$$

sourceanddraincapacitanœ

$$\mathbf{C}_{j} = \left(\operatorname{Area} \bullet \mathbf{C}_{j} \bullet \left(1 + \frac{\mathsf{VJ}}{\mathsf{PB}}\right)^{-\mathsf{MJ}}\right) + \left(\operatorname{periphery} \bullet \mathsf{CJSW} \bullet \left(1 + \frac{\mathsf{VJ}}{\mathsf{PB}}\right)^{-\mathsf{MJSW}}\right)$$

where

 $C_{j} =$ the zero - bias capacitanœ per junction area

CJSW = the zero-bias capacitane per junction per junc

MJ = the gradingcoefficient of the junction bottom

MJSW = the gradingcoefficient of the junction sidewall

VJ = the junction potential

PB = the built - in voltage (~ 0.4 - 0.8 volts)

Area = AS or AD, the area of the souce or drain

Periphery=PS or PD, the peripheryof the source or drain

 $C_{i(drain)} = 0.0043 PF(VJ = 2.5V \text{ is assumed})$

 $C_{j(source)} = 0.0043 PF(VJ = 2.5V \text{ is assumed})$

Routing Capacitance

- Single wire capacitance
 - Parallel-plate effect and fringing effect

Substrate

- ♦ Accurate capacitance evaluation : use computer
- Hand calculation : use simple model (less than 10% error)

Prof. Tai-Haur Kuo, EE, NCKU, Tainan City, Taiwan

Routing Capacitance (cont.)

- Multiple conductor capacitances
 - Three-layer example

Capacitance calculation is very complex—refer to textbook

Typical dielectric and conductor thicknesses

Thin-oxide	200Å	Metal1	6000Å
Field-oxide	6000Å	$M_1 - M_2$ oxide	6000Å
Polysilicon	3000Å	Metal2	12000Å
M ₁ -poly-oxide	6000Å	Passivation	20000Å

Distributed RC Effects

Delay time from one end to the other end

- $t \cong \frac{rc}{2}l^2$
- r:resistanceper unit length
- c: capacitance per unit length
- 1: length of the wire

Distributed RC Effects (cont.)

- Disadvantages of long wire:
 - Long delay
 - Reduction in sensitivity to noise

Method to improve disadvantages mentioned previously

In actual design, if possible,

$$\frac{\mathrm{rcl}^2}{2} << \tau_{\mathrm{g}} \implies \ell << \sqrt{\frac{2\tau_{\mathrm{g}}}{\mathrm{rc}}}$$

Distributed RC Effects (cont.)

- Transmission line effect is particularly severe in poly wire because of the relatively high resistance of this layer. Gate poly layer is the worst one because of its high capacitance to substrate.
- Strategies
 - Use metal line : small r
 - ♦ Use wider metal for signal distribution line
 - > (e.g. clock distribution line) : small r, a tiny bit large C

Inductance

- On-chip inductance are normally small.
- Bond-wire inductance is larger.
- Inductance of bonding wires and the pins on packages

$$-=\frac{\mu}{2\pi}\ln\left(\frac{4h}{d}\right)H/cm$$

 μ : the magnetic permeability of the wire

(typically1.257×10⁻⁸H/cm)

h: the height above the groundplane

d: the diameter of the wire

• Inductance of on-chip wires

$$L = \frac{\mu}{2\pi} \ln \left(\frac{8h}{w} + \frac{w}{4h} \right) H/cm$$

w: conductor width

h: the height above the substrate